Financial Functions in Excel

1. $\mathbf{N P V}$ (Net Present Value) of the cash flow $\mathbf{C}_{\mathbf{1}}, \mathbf{C}_{\mathbf{2}}, \ldots, \mathbf{C}_{\mathbf{n}}$ with the interest rate \mathbf{r} (per period):

$$
\mathrm{NPV}=\frac{\mathrm{C}_{1}}{(1+r)^{1}}+\frac{C_{2}}{(1+r)^{2}}+\ldots+\frac{C_{n}}{(1+r)^{\mathbf{n}}}
$$

Excel name: NPV
Excel arguments: Rate - interest rate \mathbf{r} per period
Value1 - cash flow $\mathbf{C}_{1}, \mathbf{C}_{2}, \ldots, \mathbf{C}_{\mathbf{n}}$
Note: Cash flows start at period 1 here. If you have a cash flow at time 0 , add it manually. If you do not have cash flow during some periods, you must enter zero - otherwise Excel ignores the time period.
Value2 - optional (never used in this class)
2. IRR (Internal Rate of Return) of the cash flow $-\mathbf{C}_{\mathbf{0}}, \mathbf{C}_{\mathbf{1}}, \mathbf{C}_{\mathbf{2}}, \ldots, \mathbf{C}_{\mathbf{n}}$. IRR finds an interest rate \mathbf{r} (per period) that solves the equation:

$$
C_{0}=\frac{C_{1}}{(1+r)^{1}}+\frac{C_{2}}{(1+r)^{2}}+\ldots+\frac{C_{n}}{(1+r)^{n}}
$$

Excel name: IRR
Excel arguments: Values - cash flow - $\mathbf{C}_{\mathbf{0}}, \mathbf{C}_{\mathbf{1}}, \mathbf{C}_{\mathbf{2}}, \ldots, \mathbf{C}_{\mathbf{n}}$
Note: Make sure that the cash flow at time zero is negative.
Guess - your best guess of what IRR might be (usually a small positive number like 0.01 (1\%))
3. Yield \mathbf{y} of the bond that makes coupon payments \mathbf{k} times per year over \mathbf{n} periods in the amount \mathbf{C}, and has a face value (or redemption value) \mathbf{V}. Yield finds the value \mathbf{y} that solves the equation:

$$
\text { Price }=\frac{C}{\left(1+\frac{y}{k}\right)^{1}}+\frac{C}{\left(1+\frac{y}{k}\right)^{2}}+\ldots+\frac{C+V}{\left(1+\frac{y}{k}\right)^{n}}
$$

Note: The Yield function in Excel corresponds to the Bond Equivalent Yield (BEY) in the case of semi-annual payments.

Excel name: Yield
Excel arguments: Settlement - bond settlement date
Maturity - bond expiration date
Note: If you are only given time to maturity, choose settlement and maturity dates to match the time to expiration.
Rate - bond annual coupon rate
Pr - current bond price per \$100 face value
Redemption - bond redemption value at maturity per $\$ 100$ face value
Frequency - number of coupon payments per year
Basis - optional (never used in this class)
4. Price of the bond that has the current yield \mathbf{y}, makes coupon payments \mathbf{k} times per year over \mathbf{n} periods in the amount \mathbf{C}, and has a face value (or redemption value) \mathbf{V}. The bond price is given by

$$
\text { Price }=\frac{C}{\left(1+\frac{y}{k}\right)^{1}}+\frac{C}{\left(1+\frac{y}{k}\right)^{2}}+\ldots+\frac{C+V}{\left(1+\frac{y}{k}\right)^{n}}
$$

Excel name: Price
Excel arguments: Settlement - bond settlement date
Maturity - bond expiration date
Note: If you are only given time to maturity, choose settlement and maturity dates to match the time to expiration.
Rate - bond annual coupon rate
Yld - current bond annual yield
Redemption - bond redemption value at maturity per $\$ 100$ face value
Frequency - number of coupon payments per year
Basis - optional (never used in this class)
5. Macaulay Duration (D) of the bond with the current price \boldsymbol{P}, and the present value of the period j coupon given by $P V C_{j}$:

$$
D=\frac{1 \times P V C_{1}}{P}+\frac{2 \times P V C_{2}}{P}+\ldots+\frac{\boldsymbol{n} \times P V C_{n}}{P}
$$

Excel name: Duration
Excel arguments: Settlement - bond settlement date
Maturity - bond expiration date
Note: If you are only given time to maturity, choose settlement and maturity dates to match the time to expiration.
Coupon - bond annual coupon rate
Yld - current bond annual yield
Note: Excel does not use the current bond price P, but uses the current bond yield.
Frequency - number of coupon payments per year
Basis - optional (never used in this class)
6. Modified Duration (\mathbf{D}^{*}) of the bond with the Macaulay duration \boldsymbol{D}, current yield \mathbf{y}, and number of coupon payments per year \mathbf{k} :

$$
D^{*}=\frac{D}{\left(1+\frac{y}{k}\right)}
$$

Excel name: MDuration
Excel arguments: Settlement - bond settlement date
Maturity - bond expiration date
Note: If you are only given time to maturity, choose settlement and maturity dates to match the time to expiration.
Coupon - bond annual coupon rate
Yld - current bond annual yield
Note: Excel does not use the Macaulay duration, but uses the current bond yield, and the number of payments per year.
Frequency - number of coupon payments per year
Basis - optional (never used in this class)

